Learning multi-agent state space representations

نویسندگان

  • Yann-Michaël De Hauwere
  • Peter Vrancx
  • Ann Nowé
چکیده

This paper describes an algorithm, called CQ-learning, which learns to adapt the state representation for multi-agent systems in order to coordinate with other agents. We propose a multi-level approach which builds a progressively more advanced representation of the learning problem. The idea is that agents start with a minimal single agent state space representation, which is expanded only when necessary. In cases where agents detect conflicts, they automatically expand their state to explicitly take into account the other agents. These conflict situations are then analyzed in an attempt to find an abstract representation which generalises over the problem states. Our system allows agents to learn effective policies, while avoiding the exponential state space growth typical in multi-agent environments. Furthermore, the method we introduce to generalise over conflict states allows knowledge to be transferred to unseen and possibly more complex situations. Our research departs from previous efforts in this area of multi-agent learning because our agents combine state space generalisation with an agentcentric point of view. The algorithms that we introduce can be used in robotic systems to automatically reduce the sensor information to what is essential to solve the problem at hand. This is a must when dealing with multiple agents, since learning in such environments is a cumbersome task due to the massive amount of information, much of which may be irrelevant. In our experiments we demonstrate a simulation of such environments using various gridworlds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Adaptive State Representations for Multi-agent Reinforcement Learning

When multiple agents act in the same environment, single-agent reinforcement learning (RL) techniques often fail, as they do not take into account other agents. An agent using single agent RL generally does not have sufficient information to obtain a good policy. However, multi-agent techniques that simply extend the state space to include information on the other agents suffer from a large ove...

متن کامل

Learning Shared Representations for Value Functions in Multi-task Reinforcement Learning

We investigate a paradigm in multi-task reinforcement learning (MT-RL) in which an agent is placed in an environment and needs to learn to perform a series of tasks, within this space. Since the environment does not change, there is potentially a lot of common ground amongst tasks and learning to solve them individually seems extremely wasteful. In this paper, we explicitly model and learn this...

متن کامل

Learning State and Action Hierarchies for Reinforcement Learning Using Autonomous Subgoal Discovery and Action-Dependent State Space Partitioning

This paper presents a new method for the autonomous construction of hierarchical action and state representations in reinforcement learning, aimed at accelerating learning and extending the scope of such systems. In this approach, the agent uses information acquired while learning one task to discover subgoals for similar tasks. The agent is able to transfer knowledge to subsequent tasks and to...

متن کامل

Multi-agent Relational Reinforcement Learning

In this paper we study Relational Reinforcement Learning in a multi-agent setting. There is growing evidence in the Reinforcement Learning research community that a relational representation of the state space has many benefits over a propositional one. Complex tasks as planning or information retrieval on the web can be represented more naturally in relational form. Yet, this relational struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010